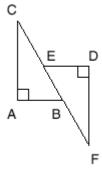

Geometry Review Sheet #6

Date Due: January 31, 2012

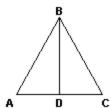
1. In the diagram below: $\overline{RL} \perp \overline{LP}$, $\overline{LR} \perp \overline{RT}$, and M is the midpoint of \overline{TP} . Which statement could be used to prove $\Delta TMR \cong \Delta PML$?


- (1) SAS \cong SAS
- (3) $HL \cong HL$
- (2) $AAS \cong AAS$
- (4) SSS \cong SSS
- 2. Two parallel lines cut by a transversal can create all the following types of angles *except*
 - (1) Alternate interior angles
 - (2) Alternate exterior angles
 - (3) Corresponding angles
 - (4) Complementary angles
- 3. In the diagram below, $\triangle ABC \cong \triangle XYZ$.

Which two statements identify corresponding congruent parts for these triangles?

- (1) $\overline{AB} \cong \overline{XY}$ and $\angle C \cong \angle Y$
- (2) $\overline{AB} \cong \overline{YZ}$ and $\angle C \cong \angle X$
- (3) $\overline{BC} \cong \overline{XY}$ and $\angle A \cong \angle Y$
- (4) $\overline{BC} \cong \overline{YZ}$ and $\angle A \cong \angle X$

- 4. The complement of every acute angle *must* be
 - (1) an acute angle
 - (2) a right angle
 - (3) an obtuse angle
 - (4) a straight angle
- 5. In the accompanying diagram, $\overline{CA} \perp \overline{AB}$, $\overline{ED} \perp \overline{DF}$, $\overline{ED} \parallel \overline{AB}$, $\overline{CE} \cong \overline{BF}$, and, $\overline{AB} \cong \overline{ED}$.

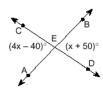

Which statement would *not* be used to prove $\triangle ABC \cong \triangle DEF$?

- (1) SAS \cong SAS
- (3) $HL \cong HL$
- (2) $AAS \cong AAS$
- (4) SSS \cong SSS
- 6. In triangle *ABC*, if altitude *AD* is drawn to side *BC*, which of the following must be true?
 - (1) $\blacktriangleleft ADB \cong \blacktriangleleft ADC$
- (3) $\triangle ADB \cong \triangle ADC$
- (2) $\overline{BD} \cong \overline{DC}$
- (4) ∢B≅∢C
- 7. In $\triangle ABC$, an exterior angle at *A* measures 40°. Which is the *longest* side of the triangle?
 - (1) \overline{AB}
 - (2) \overline{AC}
 - (3) \overline{BG}

Short Answer

Please show all work on a separate piece of paper and/or graph paper.

8. In $\triangle ABC$, \overline{BD} is both the median and the altitude to \overline{AC} . Write a two-column proof to prove: $\overline{BA} \cong \overline{BC}$?

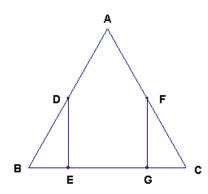

9. Given triangle *ABC* has vertices at (-2, 4), (-2,-4) and (0,-2), respectively, find the circumcenter of the triangle.

10. If line L does not intersect plane P but is not parallel to plane P, then line L is _____ to plane P.

11. Give a counterexample to the statement "If x is divisible by 8, then it is divisible by 6."

13. Write the converse of "If two sides of a triangle are congruent, then the triangle is isosceles"?

14. In the accompanying diagram, \overrightarrow{AB} and \overrightarrow{CD} intersect at E.



If $m \angle AEC = 4x - 40$ and $m \angle BED = x + 50$, find the number of degrees in $m \angle AEC$.

15. **Given**: Isosceles $\triangle ABC$ with

$$\overline{AB} \cong \overline{AC}$$
, $\overline{DE} \perp \overline{BC}$, $\overline{FG} \perp \overline{BC}$ and $\overline{BG} \cong \overline{EC}$

Prove: $\overline{BD} \cong \overline{FC}$

