Geometry Review Sheet \#6
Date Due: January 31, 2012

1. In the diagram below: $\overline{R L} \perp \overline{L P}, \overline{L R} \perp \overline{R T}$, and M is the midpoint of $\overline{T P}$. Which statement could be used to prove $\triangle T M R \cong \triangle P M L$?

(1) $\mathrm{SAS} \cong$ SAS
(3) $\mathrm{HL} \cong \mathrm{HL}$
(2) $\mathrm{AAS} \cong \mathrm{AAS}$
(4) $\mathrm{SSS} \cong \mathrm{SSS}$
2. Two parallel lines cut by a transversal can create all the following types of angles except
(1) Alternate interior angles
(2) Alternate exterior angles
(3) Corresponding angles
(4) Complementary angles
3. In the diagram below, $\triangle A B C \cong \triangle X Y Z$.

Which two statements identify corresponding congruent parts for these triangles?
(1) $\overline{A B} \cong \overline{X Y}$ and $\angle C \cong \angle Y$
(2) $\overline{A B} \cong \overline{Y Z}$ and $\angle C \cong \angle X$
(3) $\overline{B C} \cong \overline{X Y}$ and $\angle A \cong \angle Y$
(4) $\overline{B C} \cong \overline{Y Z}$ and $\angle A \cong \angle X$

Name \qquad
4. The complement of every acute angle must be
(1) an acute angle
(2) a right angle
(3) an obtuse angle
(4) a straight angle
5. In the accompanying diagram, $\overline{C A} \perp \overline{A B}$, $\overline{E D} \perp \overline{D F}, \overline{E D} \| \overline{A B}, \overline{C E} \cong \overline{B F}$, and, $\overline{A B} \cong \overline{E D}$.

Which statement would not be used to prove $\triangle A B C \cong \triangle D E F$?
(1) $\mathrm{SAS} \cong \mathrm{SAS}$
(3) $\mathrm{HL} \cong \mathrm{HL}$
(2) $\mathrm{AAS} \cong \mathrm{AAS}$
(4) $\mathrm{SSS} \cong \mathrm{SSS}$
6. In triangle $A B C$, if altitude $A D$ is drawn to side $B C$, which of the following must be true?
(1) $\triangle A D B \cong \triangle A D C$
(3) $\triangle A D B \cong \triangle A D C$
(2) $\overline{B D} \cong \overline{D C}$
(4) $\Psi B \cong \Psi C$
7. In $\triangle A B C$, an exterior angle at A measures 40°. Which is the longest side of the triangle?
(1) $\overline{A B}$
(2) $\overline{A C}$
(3) $\overline{B C}$

Short Answer

Please show all work on a separate piece of paper and/or graph paper.
8. In $\triangle A B C, \overline{B D}$ is both the median and the altitude to $\overline{A C}$. Write a two-column proof to prove: $\overline{B A} \cong \overline{B C}$?

9. Given triangle $A B C$ has vertices at $(-2,4),(-2,-4)$ and $(0,-2)$, respectively, find the circumcenter of the triangle.
10. If line L does not intersect plane P but is not parallel to plane P, then line L is \qquad to plane P.
11. Give a counterexample to the statement "If x is divisible by 8 , then it is divisible by $6 . "$
13. Write the converse of "If two sides of a triangle are congruent, then the triangle is isosceles"?
14. In the accompanying diagram, $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at E.

If $\mathrm{m} \angle A E C=4 x-40$ and $\mathrm{m} \angle B E D=x+50$, find the number of degrees in $\mathrm{m} \angle A E C$.
15. Given: Isosceles $\triangle A B C$ with

$$
\overline{A B} \cong \overline{A C}, \overline{D E} \perp \overline{B C}, \overline{F G} \perp \overline{B C} \text { and } \overline{B G} \cong \overline{E C}
$$

Prove: $\overline{B D} \cong \overline{F C}$

